Study Opens Route To Flexible Electronics Made From Exotic Materials

Home / News / Study Opens Route To Flexible Electronics Made From Exotic Materials

The vast majority of computing devices today are made from silicon, the second most abundant element on Earth, after oxygen. Silicon can be found in various forms in rocks, clay, sand, and soil. And while it is not the best semiconducting material that exists on the planet, it is by far the most readily available. As such, silicon is the dominant material used in most electronic devices, including sensors, solar cells, and the integrated circuits within our computers and smartphones.

Now MIT engineers have developed a technique to fabricate ultrathin semiconducting films made from a host of exotic materials other than silicon. To demonstrate their technique, the researchers fabricated flexible films made from gallium arsenide, gallium nitride, and lithium fluoride — materials that exhibit better performance than silicon but until now have been prohibitively expensive to produce in functional devices.

The new technique, researchers say, provides a cost-effective method to fabricate flexible electronics made from any combination of semiconducting elements, that could perform better than current silicon-based devices.

“We’ve opened up a way to make flexible electronics with so many different material systems, other than silicon,” says Jeehwan Kim, the Class of 1947 Career Development Associate Professor in the departments of Mechanical Engineering and Materials Science and Engineering. Kim envisions the technique can be used to manufacture low-cost, high-performance devices such as flexible solar cells, and wearable computers and sensors.

Details of the new technique are reported today in Nature Materials. In addition to Kim, the paper’s MIT co-authors include Wei Kong, Huashan Li, Kuan Qiao, Yunjo Kim, Kyusang Lee, Doyoon Lee, Tom Osadchy, Richard Molnar, Yang Yu, Sang-hoon Bae, Yang Shao-Horn, and Jeffrey Grossman, along with researchers from Sun Yat-Sen University, the University of Virginia, the University of Texas at Dallas, the U.S. Naval Research Laboratory, Ohio State University, and Georgia Tech.

Now you see it, now you don’t

In 2017, Kim and his colleagues devised a method to produce “copies” of expensive semiconducting materials using graphene — an atomically thin sheet of carbon atoms arranged in a hexagonal, chicken-wire pattern. They found that when they stacked graphene on top of a pure, expensive wafer of semiconducting material such as gallium arsenide, then flowed atoms of gallium and arsenide over the stack, the atoms appeared to interact in some way with the underlying atomic layer, as if the intermediate graphene were invisible or transparent. As a result, the atoms assembled into the precise, single-crystalline pattern of the underlying semiconducting wafer, forming an exact copy that could then easily be peeled away from the graphene layer.

The technique, which they call “remote epitaxy,” provided an affordable way to fabricate multiple films of gallium arsenide, using just one expensive underlying wafer.

Read the full article here:

About the National Graphene Association (NGA)

The National Graphene Association is the main organization and body in the U.S. advocating and promoting the commercialization of graphene. NGA is focused on addressing critical issues such as policy and standards development that will result in effective integration of graphene and graphene based materials globally. NGA brings together current and future graphene stakeholders — entrepreneurs, companies, researchers, developers and suppliers, investors, venture capitalists and government agencies — to drive innovation, and to promote and facilitate the commercialization of graphene products and technologies.

Join us at Global Graphene Expo & Conference, Oct 15-17, Austin, TX
https://lnkd.in/etnSFtZ
#NGAexpo #Graphene

 

Related Posts

Leave a Comment